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In this paper, utilizing system theoretic concepts a sound, rigorous theory of array processing is established which leads to 
several new results. MUSIC, MIN-NORM, ESPRIT, and PISARENKO used for both spatial and temporal spectral 
decomposition of signals are well known techniques in array processing. In this work, a general approach generalizing them 
is presented. A theory for multipath case is provided for analysis and design of array structures without the assumption of 
linearity and equal spaceness which estimates the temporal frequency and the directions for coherent sources. Our 
approach is also developed to null signals in certain directions with certain frequencies, such as for multipath cancellation. 
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1. Introduction 
 

Sensor array processing focuses on data collected at 

the sensors to carry out a given estimation task. In this 

paper, this array processing is developed via a system 

approach. Consider the situation where an array of sensors 

receive signals from multiple emitters. For many cases of 

interest (e.g., Radar, Sonar, Seismic Waves) the array 

output can be modeled as a State-Space model. The 

following equation can be written to represent a general 

case of the array system as the following [1 – 9].  
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where continuous time index as t can be used as well as 

discrete case [27]. ( )ix t  is the state vector corresponding 

to the i-th sensor. iF is the transition matrix for the i-th 

sensor, respectively. ( )iy t is the measurement vector 

received by the i-th sensor. iH is the measurement matrix 

corresponding to the i-th sensor. ( )iv t  is system noise 

associated with the targets seen by the i-th sensor, assumed 

to be normally distributed with the zero mean, and 

mutually uncorrelated. 0 0( )x t x  is determined as 

exponentials of phases of incoming signals at 0t . For 

example, if the emitted signals are sinusoidal, and the 

array is a linear equispaced one, then the components of 

(1) will be taken as, 
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where p is the number of the elements in the sensor array 

and n is the number of targets (emitters). This model can 

describe the time of evolution of a signal through an array 

( t  time sampling interval), as well as the spatial 

evolution of delay along certain directions in a multi-

dimensional array  at a certain time, or a combination of 

both. How this formulation can be obtained for 

multidimensional arrays will be explained in Section3. The 

parameters used in (2) are as 

 
ω
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delay due to angular location of the i th emitter,  in one direction
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ω

range and amplitude of the sinusoidal signal from  the i th emitter

 (3) 

 

In the proposed method, the problem is to find ωi 's 

and i 's or   as well. 

MUSIC, MIN-NORM, ESPRIT, and PISARENKO 

are well known of the techniques used for both spatial and 

temporal spectral decomposition of signals in array 

processing [10 – 26]. For a standard exposition of the 

state-space and realization theory utilized here, is 

presented in [3]. Most literature approaches the problem of 

direction-frequency finding by treating each data point 

without much regard to its intrinsic evolution structure, as 
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a sample from a stochastic process. Data points are 

primarily viewed as tools for spatial or temporal averaging 

for estimation of certain covariances (e.g., [6 – 9 , 13 – 26] 

and their references). 

Although a state-space formulation of sinusoidals 

evolving in time is considered in\cite{re:kung} initially, 

by immediately passing to covariances, the intrinsic 

structure is again lost substantially, working effectively 

with a state-space model of the covariances rather than the 

target itself. A quite different approach is taken where the 

state-space model of the signal itself in considered 

throughout, and the averaging operations are taken into 

consideration as forming reachability and observability 

grammians [3] directly, mainly as a substitute for 

covariances. 

Our results here provide a qualitative and quantitative 

theory for explaining the effects of the structure of a 

multidimensional array in regards to modifying the ranks 

of certain matrices utilized in direction-frequency 

estimation. This is important for many significant sensor 

problems which arise in Radar, Sonar, Seismic Arrays, 

such as multipath and other situations where the same 

frequency sinusoids may arrive from different unknown 

directions. The key concepts in this theory are 

observability and controllability (reachability) [27]. 

Section 3 establishes this general theory for 

multidimensional arrays. As a consequence, in Section 4, 

we establish (easily) new results on direction cancellation 

(such as for multipath) via a spatial filter, and in Section 5 

we establish a general techniques which unifies and 

extends techniques such as MUSIC and ESPRIT (e.g., [6 – 

9, 13 – 26]). 

Our approach also enables us to utilize a new type of 

correlation (explained in Section 2) which is dual to the 

commonly used one, and which proves complementary 

and quite useful as explained in Section 3. Thus, utilizing 

the system theoretic concepts a sound, rigorous theory of 

array processing is established which leads to several new 

results. 

 

 

2. A new use of output correlations for   
     frequency-direction estimation 
 

In this paper we also use a new type (in order) 

correlation than the usual type used in MUSIC-

PISARENKO techniques. First, we briefly explain this, as 

it is used in the paper for direction finding. For simplicity 

of exposition, our presentation will be in time versus one 

spatial variable though it will be replaced by another 

spatial variable along an array. Define: 
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The following assumptions are true in almost all cases 

of arrays of sensors. 

 

1:A  There exist an integer 1   such that 
*{ ( ) ( )} 0E v t v t    for all  and    

2: { ( )} 0A E v t    

3:A  The matrix F is nonsingular 

4 :A  p m , and the columns of H are linearly 

independent over C 

 
Under these assumptions, we obtain 
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By the assumptions A3 and A4,  

0 , , 0 0 0ker[ , , , ]m

t mK x Fx F x   (where, for matrix A, 

ker kernel of null space of A A A  ).  Note that 

0 , ,ker t mK   is an ( 1) ( 1)m m    matrix. Now it is 

easy to infer: 

 

Theorem 2.1 The smallest value of m for which 

0 , , ker 1t mrank K m   is the reachability index, 

0 0  ( , )n of F x . 

In such a case 
0 , , 0 ker t mrank K m n   . If we 

choose the unique numbers 
00 1 1, , , na a a C   such 
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the polynomial 
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is the characteristic polynomial of the matrix 
1F  where 

1 01( , )F x is the reachable part of 
0( , ).F x  The roots of a 

( )a z $ are 
ωij t

e


's. For time-averages used in lace of 

expected values (with a purely deterministic approach), we 

consider 

 

0

0

0

*

, ,

t M

t m t m m

t t

Y Y 



 



                     (11) 

 

Then, the assumptions 1 3A A translate into the sum 

of the last three terms over 0 0[ , ]t t M  being negligibly 

small. Then we work with 
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the same way as we did with 
0 , ,t mK  . Note that K is the 

product of the observability grammian of ( , )F H  with 

mF 
. Thus, even if all ωi 's may be the same, distinct 

ωi 's can still be determined. 

 

Remark 2.1 

 

Note that the usual type of correlations utilized are of 

the type 

 
*{ }E YY                                 (15) 

 

*{ }E Y Y                                 (16) 

 

which involves the observability grammian. With the 

unifying approach in [1] and here, these are both 

meaningful and dual, whereas (15) would not have a clear 

interpretation with the usual way or treating ( )y t  simply 

as data (ignoring its internal structure). Thus, whatever 

applies in terms of the controllability grammians in 

Sections 3-5, using (15) type correlations also applies in 

terms of the observability gramrnians using the new (16) 

type correlations. 

 
3. Use of spatial structures in arrays for  
    direction estimation 
 

In some situations such as in multipath, the signals 

from several emitters can be correlated. For example, all 

the signals may have the same frequency, but the angles of 

arrival may be different. In such cases the reachability 

grammian used in techniques which are generalizations of 

PISARENKO's technique, such as those in [27] and its 

references, will have a lower rank than number of signals, 

and the directions of the signals cannot be determined 

(since, then, we will identify a signals model 0( , , )F H x  

whose dimension is less than the number of emitters) . In 

such cases the spatial geometry of the array of sensors can 

be arranged to alleviate this problem. The following 

provides a qualitative and quantitative theory for this 

purpose. 

Suppose that we have an array with some arbitrary 

geometry, and n emitters each from a different direction 

emit the same frequency sinusoid 
ωk , 0,1,2,j te k  . 

The signal model for a single emitter will be 
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where the delays i 's are determined by the geometry of 

the array and the angle of the emitter relative to the array. 

Suppose there is another emitter emitting 
ωkj te 

 from 

another direction. The total received signal is 
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i 's will be different from i 's as the angles are different. 

Thus, the signal model 0( , , )F H x  is observable. 

However, it is not reachable. The reachable and observable 

part of the signal model has dimension one. Thus, no 

technique can identify the true 0( , , )F H x  from 1( )Y t  

via covariance techniques where the signal covariance is 
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(essentially the controllability grammian (see [3]). We can 

only identify the one-dimensional reachable and 

observable part of this signal. 

Next suppose that we use another arbitrary array with 

the same number of elements and we pair the elements of 

the two arrays in some (arbitrarily chosen) manner, only 

subject to the constraint that each element of the second 

array receives a signal (from any fixed direction) with the 

same amount of delay, 0, relative to one (different) 

element of the first array.   will depend on the geometry 

of the array as well as the direction of the emitter. (An 

example of such an array is a planar rectangular array). 

thus, the output of the second array will be 
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where i  is the delay associated with each emitter. Then 

we can write 
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where 1 2( ), ( )v t v t  are noise processes associated with 

each array. Thus, for any 0t  , we have 
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where we assumed that 1 2( )   and  ( )v t v t $ are spatially 

white processes (i.e., the measurement noise process for 

each subarray is uncorrelated ; 

If, in general, there are $n$ emitters with frequencies 

1ω , ,ωn  (some subsets of the ω 's can be identical) , 

and if we use n arrays each containing p sensors with 

outputs 1y , ,yn , arranged such that any two succeeding 

arrays are placed identically with respect to relative 

delays, and as described above for two arrays (such as a 

rectangular array equally spaced in one direction), then 
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More generally, for 0 , 0t k  , we can consider 

both temporal and spatial time shift situations 

simultaneously by considering 
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Then, 
*

, ,{ }t k tE Y Y                                (31) 

 

for any suitable integers , , ,t k  , so that the noise 

covariance term in (31) is either diagonal or zero; to obtain 

expressions of the type, 
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where 
1Q  represents the noise covariance term. If   is 

chosen to be the finite decorrelation time for the noise 

processes, then 
1 0Q  . If 0,k    and, noise is 

spatially white, and temporally white 
1Q  will be of the 

form .I , for some scalar 0  . We can also form 

covariances of the form 

  
* * * *

, , 1 1 2{ } t t

t k t k k kY Y F H H F Q





         (33) 

 

where 2Q  is zero of 

decorrelation interval for the noise process  . 

Under suitable whiteness assumptions of ( )iv t , it will be 

of the type . ( 0 scalar for 0)I    . Note that 

from (32) and (33) one can obtain ωi 's and the two sets of 

direction cosines separately. For direction finding with ωi

's known, if there are enough many sensors in the array 

direction forming H so that the columns of H are linearly 

independent, then it is enough to use (32) and (33) with 

0k  . 

The important point is that via the use of more arrays, 

now we have ensured that 1 0( , )F x  is reachable, even 

though 0( , )F x  may not be which is the condition for the 

covariances to have the necessary rank for frequency or 

direction determination (e.g., in [27] using a dimensional 

array). 

By using kH  for suitable k instead of only H, we can 

apply these techniques to the cases where the columns of 

H are not necessarily independent (say there are less 

sensors,  , in each array, than the number of emitters, n). 

Still the columns of kH  can be linearly independent while 

those of H are not (for determining ωi 's as in [27]). 

 

Remark 3.1 

 

Similarly, one can consider 
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and take the cross covariances as above. Now the 

expressions obtained will be similar to (32) and (32) with 

the only difference being that F and 
1F  will be exchanged 

in the resulting expressions. Still the same techniques can 

be used to find 
1 0, ,F F x , and H. Finally, note that our 

remarks in Section 5 also apply in this situation. 

 
Remark 3.2 

 

As explained in [27] , the results developed here for 

an array of sensors can also be applied to any structure or 

medium for i) determining the dominant modes of 

vibrations due a disturbance, and ii) for locating the 

direction from which the disturbance propagates along the 

structure. 

 

Remark 3.3 

 

From the results developed in this paper so far, it is 

clear at this point how to arrange data points into matrices 

in certain ways and cross-correlate them (to cancel the 

terms due to noise) to obtain expressions of the type 
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 ), and possibly some other 

expressions (for example, some or all of the F's and 1F 's 

can appear interchanged) . , , ,t k m , and s denote some 

nonnegative integers. In (35)-(38) for a given 

(1 4)iL i  , iL  denotes a same type of matrix with 

possibly different values for the integers occurring in iL , 

depending on the situation (while checking linear 

dependencies on the rows or columns of the correlations). 

Now one can use the same type of eigenvalue-

eigenvector techniques or the ones in [1] and its references 

to obtain frequencies (via eigenvalues of F) and/or 

direction of arrivals (via eigenvalues of 1F  and H). 

 

Remark 3.4 

 

By correlating the L's in a different order one can also 

obtain expressions of the type 

 
* * *

1 1 2 2 4 4, ,L L L L L L                        (39) 

 

where, now the conjugate transposes of the reachability 

type matrices replace the observability type matrices 

occurring in (35)-(38). Note that this type of correlation 

has not been used in the literatüre before, although, it is 

seen to be quite useful from the theory developed here. 

These forms give rise to several possible techniques 

of direction of arrival estimation. Some examples are: 
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*

1 1L L  to obtain, say, 
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Thus, by finding the linear dependencies among the 

rows or columns of 
*

1 1L L  , we can obtain 1F  (which 

usually describes one of the direction cosines). Then, 

forming 

 
1 2** *

0 0

t t
HF G G F H                          (41) 

 

and finding the linear dependencies, we can determine the 

remaining direction cosine. 

ii) To obtain both angles simultaneously, consider 
*

2 2L L , 

and then, apply the technique of finding the linear 

dependencies among the rows or columns, as described in 

(35)-(38) and 

the references of these papers. 

iii) Using 
*

1 1L L  and 
*

1 1L L  , one can obtain the 

frequencies (i.e., F) as well as angles of arrivals (from H 

and 1F ). 

Clearly, many variations of these techniques are 

possible. Note that with these techniques 
0x  can also be 

found (which gives the amplitude and the phase of the 

signal from each direction). 

 

Remark 3.5 

 

We should note that in many real situations, there will 

be a continuum of angles of arrivals. (say, clutter signals 

for Radars, or Multipath of Sonar Signals). Thus, no 

matter how many sensors are used to form how many 

arrays, usually the number of rows H will be always less 

than its columns. Also, any linear dependencies will be 

only approximate. thus, linear dependencies must be 

determined using approximate techniques developed for 

this purpose (e.g., (35)-(38)). 

 

 

4. Nulling signals from certain directions 
 

The signals from certain directions (say multipath) 

can be canceled as follows. Let's consider the general 

expression (38) with 0r t   , to obtain 
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           (42) 

 

where 
0*

4L  is a proper possibly shifted (temporally in 

terms of sampling time, and/or spatially in terms of the 

sensors) version of 
0

4L . Let ( )Q z  be defined as 
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where ( )iq z  is the i-th row of ( )Q z , a polynomial 

vector, given as 
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where 1iv   is the observability index, and ijq  describe 

linear dependencies among the rows of the observability 

matrix of 1 1( , )H F  in lexicographic order, (e.g., [1] and 

its references). Then the rows of ( )iq z  can be put 

together to form matrices iQ  such that 
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where max{ }iv v  is the maximum of these indices 

(called the observability index), or, 
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Thus, if we weigh the sensor array outputs according 

to (46), the sum will be zero for the signals which 

determine H and 1F  via their frequencies and angles (both 

the elevation and the azimuth). From (46) and 

2 1 1H T H  one can characterize all such weightings to 

cancel reception of signals characterized by 1( , )H F . 

 

Remark 4.1 

 

Usually we may not wish to cancel all the incoming 

signals. Then, we can decompose 1( , )H F   into two parts 

such as 

  11 12

11 12

22

 ; 
0

F F
H H H F

F

 
   

 
          (47) 

so that the signals we wish to cancel are characterized by 

11 11( , )H F , then we have the form 
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1 2

11 11

1

11 11

k

k

H H
H

H F x
HF

H F x

HF
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                (48) 

 

where x's denote some possibly nonzero matrices. Then we 

can apply the above technique to 11 11( , )H F  to cancel the 

signals corresponding to the direction and modes of 1F  

determining 11H  and 11F  only. 

 
5. A generalization of ESPRIT 
 

A comparison of the techniques for direction 

estimation given in this section (starting with remark 3.5) 

versus another well-known techniques of direction 

estimation, ESPRIT (see e.g., [8], and the references there) 

is as follows. Later, it will be seen that the techniques 

given here provide an extension of ESPRIT. For ESPRIT 

two subarrays are utilized to obtain (ignoring noise) 

 

1

( )
H

S t
HF

 
 
 

                           (49) 

 

where the columns of ( )S t  are the noise-free signal 

samples. Then the generalized eigenvalue problem for 

 

1( ) ( )H I F S t                           (50) 

 

is solved to determine i 's which will be the eigenvalues 

of 1F  provided that i) the rows of ( )S t  are linearly 

independent, ii) the columns of H are linearly independent 

; p n . 

In our techniques, with the type of cross correlations 

done as described in this section (for noise considerations) 

we search for (approximate) linear dependencies 

(observability indices) among the rows of 

 

1

1

k

H

HF

HF

 
 
 
 
 
  

                                (51) 

 

where T is a nonsingular matrix. Under assumptions i) and 

ii) above, all the observabiity indices of the pair 1( , )H F  
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will be equal to one. If we partition H (after, perhaps 

rearranging the rows of H if necessary) 

 

1

2 1 1

2

 ; 
H

H H T H
H

 
  
 

                  (52) 

 

for some matrix 
1T  we have 

 

1 1 1 0FH T H FT                          (53) 

 

That is, 1F  describes the linear dependencies. If, as in 

ESPRIT, we also assume that 1F  is diagonal, 
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2 ω

1

. . 0
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 ; 

. . . .
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i ij
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n
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ω

ω
ω

ω

  (54) 

 

Then, clearly the columns of 1H  are the eigenvectors 

of 1F , with the corresponding eigenvalues iω 's. Thus, in 

this case, our general techniques of direction estimation 

yield a technique that is an alternative to ESPRIT, when 

there is no noise. 

However, it should be noted that since in many cases 

there will be infinitely many angles of arrivals, in 

actuality, even to an approximation, H will contain more 

columns than rows no matter how many sensors are used. 

1F  will also contain infinitely many eigenvalues (that is, if 

we assume a discretization of the continuous angle range 

from which signals are received). 

Thus, the approximate linear dependencies of the 

rows of 1HFT  to those of HT may not be very 

satisfactory. As we increase k and consider the 

approximate linear dependencies of the rows of 

 

1

1

k

k

H

HF
H T

HF

 
 
 
 
 
  

                            (55) 

 

the rows of 1HFT  will be more linearly dependent 

(approximate dependency), because then we will be 

assuming 1F  to contain more angular direction, and thus 

ignoring a lesser number of spatial modes. Thus, to obtain 

more satisfactory direction estimated, one must use a 

larger number of ( 1)k   subarrays rather than 

constraining to two subarrays. Thus, then one can use the 

general techniques developed in this section to achieve 

direction estimation to a greater degree of accuracy. This 

provides a generalization of ESPRIT. 

 
Remark 5.1 

 

If 
1F  is diagonal, it is clear that the i-th column of 

iHω and 
1HF  will be the same. Thus, then 

 

1iH HFω                               (56) 

 

will have an identically zero column. Thus, this can be 

used as a technique to null the signals from an angle 

specified by one of iω 's direction. That is 

 

1

[  :  ] 0i

H
I I

HF

 
  

 
ω                       (57) 

 
More generally, if 

 

0 1( ) ( ) ( )  ; r
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then 
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1
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              (59) 

 

 

will have its 1 2, , , ri th i th i th   , columns to be 

zero. Thus, 0 , , rp p  are proper weightings to null the 

signals from r directions (specified by ω 's) using 1r   

subarrays, regardless of H (the other angle). To achieve 

nulling from point directions however, H must also be 

taken into account. 

 
Remark 5.2 

 

An equally important use of an array with n or more 

subarrays is the following. For all the Spectral 

Decomposition, Direction Estimation techniques to work, 

the signal covariance matrix has to be assumed 

nonsingular. This is known not to be the case when emitter 

signals (such as the case of multipath) are correlated. Via 

our treatment of the signal as a deterministic totally 

unknown quantity and via the use of n subsensors, we are 

able to exploit the concept of reachability, being able to 

replace the signals covariance matrix via the reachability 

grammian of the pair 0( , )F x  and/or the reachability 

grammian of the pair 1 0( , )F x . This is used to ensure the 

nonsingularity of the reachability grammian even if all the 

signals are of the same type (completely correlated), say, 
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ωj k te 

, with the same frequency. This also enables us, if 

necessary, to completely separate the estimation of 
1F  and 

of H (two different direction cosines). 

 

 

6. Conclusion 
 

In this paper, a system theoretic approach is 

developed which extends techniques such as MUSIC, 

MIN-NORM, ESPRIT, and PISARENKO for both spatial 

and temporal spectral decomposition of signals. It is 

shown that use of system theoretic concepts leads to a 

sound, rigorous theory of array processing, which yields 

several new techniques. 

Future work will concentrate on the use of the 

extrapolation of this theoretical study in order to obtain 

improvements in the implementation of the developed 

approaches. 

 

 

References 

 
  [1] R. E. Kalman, Proc. Colloque LI-ONS, 1989. 

  [2] S. Y. Kung, K. S. Arun, D. V. Bhaskar Rao, Journal  

        of Optical Society of America, 73, 1799 (1983). 

  [3] R. W. Brockett, Finite Dimensional Linear System,  

        NY: Wiley 1970. 

  [4] G. Golub, W. Kahan, SIAM J. Numer. Anal., 2(2),  

        205 (1965). 

  [5] A. S. Householder, The Theory of Matrices in  

        Numerical Analysis, Dover, 1964. 

  [6] F. Li, K. J. Vaccaro, IEEE Trans. Aerospace and  

       Electronic Systems, 26(6), 976 (1990). 

  [7] R. O. Schmidt, R. E. Franks, IEEE Transactions on  

        Antennas and Propagation, AP-34(3), 281 (1986). 

  [8] J. J. Fuchs, IEEE Transactions on Automatic Control,  

        35(12), 1338 (1990). 

  [9] B. Ottersten, T. Kailath, IEEE Transactions on  

        Acoustics, Speech and Signal Processing, 38(2), 317  

        (1990). 

[10] A. Ferre, M. Chenu-Tournier, IEEE International  

        Conference on Acoustics, Speech, and Signal  

        Processing, ICASSP-, 05, 3113 (2000). 

[11] M. Rivas, S. Xie, D. Su, IEEE International  

        Conference on Advanced Communication  

        Technology (ICACT), ICACT-13th Conference, 05,  

        321 (2011). 

 

 

 

 

 

 

 

 

 

 

 

 

[12] A. El-Keyi, T. Kirubarajan, A. B. Gershman, IEEE  

        Transactions on Signal Processing, 8, 3032 (2005). 

[13] K. Mahata, IEEE Transactions on Signal Processing,  

        53(10), 3727 (2005). 

[14] S. Valaee, B. Champagne, P. Kabal, IEEE  

        Transactions on Signal Processing, 43(9), 2144  

        (1995). 

[15] F. Li, H. Liu, R. J. Vaccaro, IEEE Transactions on  

        Aerospace and Electronic Systems, 29(4), 1170  

        (1993). 

[16] Guanghan Xu, S. D. Silverstein, R. H. Roy, T.  

        Kailath, IEEE Transactions on Aerospace and  

        Electronic Systems, 42(2), 349 (1994). 

[17] J. Li, IEEE Transactions on Aerospace and Electronic  

        Systems, 28(2), 520 (1992). 

[18] Q. Wu, J. P. Reilly, IEEE International Conference on  

        Acoustics, Speech and Signal Processing, ICASSP- 

        91, 5, 3365 (1991). 

[19] J. S. McGarrity, J. J. Soraghan, T. S .Durrani, S.  

        Mayrargue, IEEE International Conference on 

        Acoustics, Speech and Signal Processing, ICASSP- 

        91, 5, 3285 (1991). 

[20] B. D. Rao, K. V. S. Hari, IEEE Spectrum Estimation  

        and Modeling, 1990 Fifth ASSP Workshop, 10-12  

        October 377 (1990). 

[21] B. Friedlander, IEEE Transactions on Acoustics,  

        Speech and Signal Processing, 38(10), 1740 (1990). 

[22] K. M. Buckley, X. L. Xu, IEEE Transactions on  

        Acoustics, Speech and Signal Processing, 38(11),  

        1842 (1990). 

[23] F. Li, R. J. Vaccaro, D. W. Tufts, IEEE International  

        Conference on Acoustics, Speech and Signal  

        Processing, ICASSP-89, 4, 2613 (1989). 

[24] S. L. Marple Jr., IEEE International Conference on  

        Acoustics, Speech and Signal Processing, ICASSP- 

        89, 4, 2152 (1989). 

[25] S. Lang, J. McClellan, IEEE Transactions on  

        Acoustics, Speech and Signal Processing, 31(2), 349  

        (1983). 

[26] S. Lang, J. McClellan, IEEE International Conference  

        on Acoustics, Speech and Signal Processing,  

        ICASSP'82, 7, 12 (1982). 

[27] E. Emre, IEEE Transactions on Aerospace and  

        Electronic Systems, 27(1), 103 (1991). 

 

 

 

________________ 
*Corresponding author: askind@sakarya.edu.tr 

 


